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Level statistics for electronic states in a disordered fractal
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Department of Physics, University of Ioannina, Ioannina, 45 110, Greece.
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Abstract. We present results for the density of states and the statistics of the energy levels in a
random tight binding matrix ensemble defined on a disordered two-dimensional Sierpinski gasket.
In the absence of disorder the nearest level spacing distribution functionP(S) is shown to follow
the inverse power lawP(S) ∝ S−D0−1, which defines the fractal dimensionD0 = 0.56± 0.01
of the corresponding spectrum. In the random caseP(S) approaches, instead, the Poisson law
e−S , which is consistent with localization of the corresponding eigenstates. In the presence of
a random magnetic flux our results also scale towards the Poisson statistics.

Energy level statistical methods have been originally developed to describe the spectra in
complex and chaotic systems [1–3]. They have also been recently introduced in order
to understand the electronic localization properties of disordered materials [4–10]. It
has become clear that for diffusing electrons, where the corresponding wavefunctions are
extended having a constant amplitude on average, the energy levels are correlated displaying
level repulsion at short distances. The opposite occurs for localized electrons since the
wavefunction amplitudes decay exponentially in space and the corresponding energy levels
are uncorrelated or randomly distributed. Moreover, level statistics can be a powerful tool
to locate the Anderson metal–insulator transition at the point in the spectrum (mobility
edge) where the statistics changes and also to identify the related critical behaviour [7–
14].

In a quantum disordered system apart from averages for the measurable physical
quantities their fluctuations must also be computed. Such calculations can conveniently
proceed from energy level statistical studies via the diagonalization of random Hamiltonian
matrices within an appropriate statistical ensemble. Usually non-interacting electrons are
considered in the dimensionalityd-dependent tight binding approximation. In the metallic
phase where the states are extended the level statistics resembles that found in the Wigner–
Dyson (WD) Gaussian random matrix ensembles [1–3], which are classified according to
symmetry into three universality classes corresponding to the Gaussian orthogonal ensemble
(GOE), the Gaussian unitary ensemble (GUE) and the Gaussian symplectic ensemble (GSE).
The simplest level fluctuation measure which can be introduced is the nearest-level spacing
distribution functionP(S) and level repulsion causes a power-law behaviourP(S) ∝ Sβ

for S → 0, whereβ = 1, 2, 4 for GOE, GUE and GSE, respectively. The full result for
the GOE is the well known Wigner surmiseP(S) = (πS/2) exp(−πS2/4), defined so that
the mean level spacing is1 = 〈S〉 = 1. The agreement for the level statistics between the
tight binding random matrix ensembles and the WD ensembles holds in anyd as long as
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the disordered system is well in its disordered metallic phase. The level repulsion arises
in this case because of the extended nature of the wavefunctions which overlap with each
other. In the localized regime, however, the states are non-overlapping in space and imply
uncorrelated spectra with levels obeying normal Poisson statistics withP(S) = exp(−S).
The problem of level statistics at the mobility has been considered in many recent studies
and a new universalP(S) which also shows the WD behaviour proportional toSβ for
S → 0 has been obtained [6–10]. Asymptotic power laws for the behaviour at largeS have
also been proposed [11-14].

In this paper we study, via level statistics, the localization induced by randomness in a
Sierpinski gasket lattice [15]. This deterministic self-similar structure is built in a Euclidean
dimensiond = 2 and has a non-integer fractal dimensionalitydf = ln 3/ ln 2 ≈ 1.58. In the
absence of disorder scaling computations reveal exotic localization properties induced by the
long-range correlated fractal lattice potential [16, 17]. We show that these localization effects
are also manifested in the spectrum with a self-similar density of states characterized by a
fractal dimensionD0 and an inverse power-law level spacing distributionP(S) ∝ S−D0−1,
denoting a kind of level clustering instead of level repulsion. In the presence of a random
site potential (finiteW ) we show that the statistics becomes Poisson, in agreement with
the scaling theory of localization [18], which predicts a metal–insulator transition only for
d > 2 in the absence of spin dependence or an added magnetic field. In order to check
whether extended states might exist in the presence of a random magnetic field, which
breaks the time-reversal invariance so that the GUE becomes the appropriate metallic limit,
we have also introduced a random phase model. This corresponds to the presence of random
magnetic flux and itsd = 2 analogue has attracted much attention recently in connection
with the half-filled quantum Hall effect and also high-Tc superconductivity [19, 20]. Our
results for this case are also consistent with localization of the states.

We find the eigensolutions for an ensemble of tight binding electronic Hamiltonians on
the Sierpinski gasket

H =
∑

j

εj c
+
j cj +

∑
(j,j ′)

Vj,j ′c+
j cj ′ (1)

wherec+
j creates an electron on sitej and j labels all the sites|j〉 of the fractal lattice

which define an orthogonalized basis set. The second sum is taken over all nearest-neighbour
lattice pairs(j, j ′) and the hopping parameter isVj,j ′ = −1. The spin-independent random
on-site potentialεj denotes the diagonal disorder and is taken as a random variable chosen
from a uniform probability distribution of widthW , which denotes the strength of disorder.
We have also adopted the boundary conditions of [16], which identify the corners of the two
identical triangles on the largest scale (see figure 1) and the lattice is generated by inserting
sites onto each of the triangles. In this representation every site has exactly four nearest
neighbours and the corresponding spectrum lies in [−4, 4]. If we denote byn the number
of insertions the corresponding system has 3n+1 sites and the Hamiltonian of equation (1)
is considered for finiten’s.

In the absence of diagonal disorderW = 0 the self-similarity of the gasket leads
to a natural decimation renormalization group procedure [16, 17]. The energy levels
and the wavefunctions can be directly computed by using the recursive relation for the
energy

E′ = −E(E + 3) (2)

which for each state with energyE′
n−1 of the leveln−1 gives two states at the leveln with
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energies

En,± = −3 ± (9 − 4E′
n−1)

1/2

2
(3)

with E other than 1 and ±2 which have to be treated separately. The
main result from these computations is that the spectral measure is com-
posed of two kinds of energies. The first kind consists of a pure point
spectral measure corresponding to strongly localized (molecular) states and the
other defines a singular continuous spectrum with critical states (see, however,
[21]).

Figure 1. The Sierpinski gasket lattice at the generationn = 2. The lower (upward pointing)
triangle is a prototype of a basic structure from which sites can be eliminated by decimation. The
adopted boundary conditions are denoted by the numbers 1, 2, 3 for the two largest triangles.

We have used the above decimation procedure whenW = 0 to generate all the levels
Ei , i = 1, 2, . . . , 3n+1, for up to n = 11. Our results for the integrated density of states
N(E) = ∫ E

−∞ ρ(E′) dE′ are plotted in figure 2(a). We observe a ‘devil’s staircase’ picture
with plateaux and jumps corresponding to gaps and degeneracies, respectively. There is
no need to distinguish between the two kinds of states although it should be mentioned
that the strongly localized states have non-zero amplitudes only on a finite number of sites
(molecular states) [17] and the rest are critical states (1/3 of the total number), which consist
of the non-degenerate uniformE = −4 level and theE = +1 plus all its ‘descendants’ via
equation (3) forming the edges of the gap intervals. In order to consider level fluctuations
we have computed the integrated level spacing distributionN(S) = ∫ ∞

S
P (S ′) dS ′ for the

same system, whose derivative gives−P(S). Our results, after sorting out all the levels with
increasing magnitude and normalizingN(S) so thatN(0) = 1, are displayed in figure 2(b).
It is clearly seen thatN(S) obeys the inverse power lawN(S) ∝ S−D0 with the exponent
determined by a least-squares fit, which givesD0 = 0.56± 0.01. Thus the level spacing
distribution behaves as

P(S) ∝ S−D0−1. (4)

In the presence of disorder (finiteW ) a statistical random matrix ensemble is created and
for each random matrix we numerically find all the eigenvalues by exact diagonalization.
The plots for the ensemble averaged density of levelsρ(E) and the correspondingP(S)

distributions are shown in figures 3–5. We observe that the strong degeneracies in the
density of states which exist in theW = 0 case now disappear. However, for smallW

remnants of the dominant spectral gaps are still present in the spectrum (see figure 3(a))
which vanish only for largerW values (figures 4(a) and 5(a)). In order to compute
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Figure 2. (a) The computed integrated density of states for the Sierpinski gasket at then = 10
generation in the absence of a random potential (W = 0), which contains 311 states by including
level degeneracies. The plateaux correspond to gaps and the vertical lines to degenerate states
in the band. (b) The corresponding integrated level spacing distribution function for three
successive generationsn = 9, 10, 11, together with the inverse power-law best fitS−D0. The
obtained results imply for the level spacing distribution the inverse power lawP(S) ∝ S−1.56.

the P(S) it was essential to unfold the energy levels by considering the distribution of
xi+1 − xi = 〈N(Ei+1)〉 − 〈N(Ei)〉, instead ofEi+1 − Ei , where〈N(E)〉 is the averaged
integrated density of states. There was no need to unfold the spectrum for the non-random
W = 0 case since the spectral fluctuations there remain self-similar in all scales and
unfolding does not change the obtained power law of equation (4). In the random case
we firstly compute〈N(E)〉 in a few points within the adopted energy range and then
to more (about 10 000 points) by cubic interpolation to obtain the set of unfolded levels
xi = 〈N(Ei)〉. TheP(S) function computed forSi = xi+1 −xi satisfies the constant density
requirement with1 = 〈S〉 = 1. The calculatedP(S) using the unfolded levels for finiteW
and different system sizes scales towards the Poisson distribution in all the cases considered
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Figure 3. (a) The computed enemble averaged density of states for the Sierpinski gasket with
added diagonal disorder (W = 1) at then = 6 generation, which contains 37 levels and for 100
random runs, that is with a total number of 100× 37 levels. The gaps which exist in theW = 0
case have not completely closed in this case. (b) The level spacing distribution function for
disorder strengthW = 1 using the unfolded data in the energy window [−1, 1] for gaskets of
different sizes corresponding to the generationsn = 4 (broken curve),n = 5 (dotted curve) and
n = 6 (continuous thin curve). The statistical ensemble consists of 900, 300 and 100 random
matrices in each case, with 67 678, 67 727 and 67 612 levels in the chosen window, respectively.
The GOE Wigner surmise is also shown for comparison (wide broken curve) which should be
approached for infinite size in the metal and the continuous thick curve is the Poisson law
approached in the localized case.

(figures 3(b), 4(b) and 5(b)). From these results we can reach the conclusion of localization
for the corresponding wavefunctions in the random gasket.

We have also considered a model which breaks the time-reversal symmetry due to a
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Figure 4. (a) The same as in figure 2(a) but for disorderW = 5. No gaps are seen in this case.
(b) The same as in figure 2(b) but for W = 5 and within the the energy window [−2, 2]. The
levels which fall in the window are 109 434, 109 225 and 109 595 for each sizen = 4, 5 and 6,
respectively.

random magnetic field. The corresponding Hamiltonian is

H =
∑
(j,j ′)

e2πiφj,j ′ c+
j cj ′ (5)

where the sum is taken over all nearest-neighbour lattice pairs(j, j ′) on the Sierpinski
gasket and the phaseφj,j ′ is a random variable uniformly distributed between 0 and 1. The
corresponding WD limit in this case is the GUE and should be reached only if extended
states are present in the system. The random matrices of equation (5) are complex Hermitian
and for the numerical diagonalization we have also used the Lanczos method [8]. Our results
for the density of states are displayed in figure 6(a) and we observe no spectral singularities
but a broad minimum around the band centre, which is similar to what was found in the
two-dimensional case [20]. In order to compute theP(S) function the levels are collected
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Figure 5. (a) The same as in figure 2(a) for W = 10. No gaps are seen in this case. (b) The
same as in figure 2(b) for W = 10 and the energy window [−2, 2]. The levels in the window
are 75 551, 75 739 and 75 431 forn = 4, 5 and 6, respectively.

in a specific narrow energy window around the band centre forn = 4, 5 and 6 for many
random runs. Our purpose is to exclude the possibility of extended states near the band
centre, since it is very unlikely that such states can exist in other parts of the band. Our
results are shown in figure 6(b) for levels near the band centre. We observe that theP(S)

function moves slowly towards the Poisson limit when the system size increases so that the
corresponding states should be localized, although with larger localization lengths than in
the random model of equation (1).

In summary, we have considered the density of states and the energy level fluctuations
for two tight binding models with and without time-reversal symmetry defined on a
deterministic fractal system. Localization of the wavefunctions is probed in the space
of non-integerd by powerful level statistical techniques. The most important results are as
follows. (1) The level statistics in a non-random fractal is characterized by an inverse power-
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Figure 6. (a) The computed averaged density of states for the random phase model at then = 5
generation containing 36 levels for 300 random runs. (b) The level spacing distribution function
for the unfolded data in the random phase model with system sizesn = 4, 5, 6 and 800 runs for
each size. The adopted windows are [−0.45, 0.45], [−0.15, 0.15] and [−0.05, 0.05] for n = 4,
5 and 6 with 24 158, 24 327 and 24 519 levels in each case, respectively. The wide broken
curve is the GUE Wigner surmiseP(S) = (32/π2)S2 exp(−(4/π)S2), which corresponds to
the metal (shown for comparison), and the continuous curve is the Poisson law which should
be approached for infinite size.

law distribution of the nearest level spacings in which enters the fractal dimensionD0 of the
density of states. (2) From the scaling analysis of theP(S) distribution we can conclude that
the states localize for any non-zero amount of disorder. (3) A random phase model, which
corresponds to an added random magnetic field, is also consistent with localization of the
states. The kind of inverse power-law level statistics obtained for the non-random fractal
is familiar from quasi-periodicd = 1 systems [22]. Our results could contribute towards
a better understanding of localization in such materials, which lie between crystalline and
random, and can be used in order to check various dimensionality dependent results.
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